New Approach Boosts Performance in Thermoelectric Materials

A team of researchers – from universities across the United States and China, as well as Oak Ridge National Laboratory – is reporting a new mechanism to boost performance through higher carrier mobility, increasing how quickly charge-carrying electrons can move across the material. The work, reported this week in the Proceedings of the National Academy of Science, focused on a recently discovered n-type magnesium-antimony material with a relatively high thermoelectric figure of merit, but lead author Zhifeng Ren said the concept could also apply to other materials.

“When you improve mobility, you improve electron transport and overall performance,” said Ren, M.D. Anderson Chair professor of physics at the University of Houston and principal investigator at the Texas Center for Superconductivity at UH.